The Taylor Polynomial Approximation to a GIVEN Function (Story)

• What is a polynomial?

• Why do we like polynomials?

The Taylor Polynomial Approximation to a GIVEN Function (Story)

• Suppose we want to calculate sin(0.03). Is f(x) = sin x a degree 1 polynomial?

The Taylor Polynomial Approximation to a GIVEN Function (Story)

• Is $f(x) = \sin x$ a degree 3 polynomial?

The Taylor Polynomial Approximation to a GIVEN Function (Story)

• What happens if we keep doing this? Is $f(x) = \sin x$ a degree *n* polynomial?

The Taylor Polynomial Approximation to a GIVEN Function (Story)

• Taylor series generated by a given function f

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(0)}{i!} x^i$$

Taylor series generated by f centered at 0

Taylor series generated by fcentered at x_0

$$f(x) \approx \sum_{i=0}^{n} \frac{f^{(i)}(0)}{i!} x^{i}$$

$$f(x) \approx \sum_{i=0}^{n} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$

Taylor polynomial approximation to f centered at 0

Taylor polynomial approximation to f centered at x_0

Some Problems

- *f* needs to be infinitely differentiable in order to generate a Taylor series, otherwise the best we can do is get a polynomial approximation
- Does the Taylor series generated by *f* always converge to *f*?

The Taylor Polynomial Approximation to a GIVEN Function (Story)

• Taylor series generated by a given function f

Some Problems

- *f* needs to be infinitely differentiable in order to generate a Taylor series, otherwise the best we can do is get a polynomial approximation
- Does the Taylor series generated by *f* always converge to *f*?

In this section we will assume that...

- Taylor polynomials are "good" approximations to the given function f
- The Taylor series generated by f "always" converges to f

The Taylor Polynomial Approximation to a GIVEN Function

Example 1 Determine the fourth-degree Taylor polynomials matching the functions e^x , $\cos x$, and $\sin x$ at $x_0 = 2$.

The Taylor Polynomial Approximation to the Solution to an IVP (Story)

The goal of this section is...

- Given an IVP, instead of finding the exact solution, find a Taylor polynomial approximation to the solution (i.e. find an approximate solution)
- This time around, instead of finding a Taylor polynomial approximation to a given function f, we are going to find a Taylor polynomial approximation to the solution to the IVP y(t)
- To do this, we need to know y(0), y'(0), y''(0), y'''(0), ... and so on. Some of these are given initial conditions and some we find using the differential equation

The Taylor Polynomial Approximation to the Solution to an IVP

Example 2 Find the first few Taylor polynomials approximating the solution around $x_0 = 0$ of the initial value problem $y'' = 3y' + x^2y; \quad y(0) = 10, \quad y'(0) = 5.$

The Taylor Polynomial Approximation to the Solution to an IVP

Example 2 Find the first few Taylor polynomials approximating the solution around $x_0 = 0$ of the initial value problem $y'' = 3y' + x^2y; \quad y(0) = 10, \quad y'(0) = 5.$

It is of interest to note that if the original equation in Example 2 were replaced by $y'' = 3y' + x^{1/3}y$, the third derivative would look like $y''' = 3y'' + y/(3x^{2/3}) + x^{1/3}y'$, and y'''(0) would not exist. Only Taylor polynomials of degree 0 through 2 can be constructed for the solution to this problem.

The Taylor Polynomial Approximation to the Solution to an IVP

Example 3 Determine the Taylor polynomial of degree 3 for the solution to the initial value problem

(4)
$$y' = \frac{1}{x+y+1}$$
, $y(0) = 0$.

<u>Question</u>: When does the Taylor series generated by f converge to f?

$$\varepsilon_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$

Figure 8.1 on page 422 and equation (6) suggest that one might control the error in the Taylor polynomial approximation by increasing the degree *n* of the polynomial (i.e., taking more terms), thereby increasing the factor (n + 1)! in the denominator. This possibility is limited, of course, by the number of times *f* can be differentiated. In Example 2, for instance, the solution did not have a fifth derivative at $x_0 = 0$ ($f^{(5)}(0)$ is "infinite"). Thus, we could not construct $p_5(x)$, nor could we conclude anything about the accuracy of $p_4(x)$ from the Lagrange formula.

However, for Example 3 we could, in theory, compute *every* derivative of the solution y(x) at $x_0 = 0$, and speculate on the *convergence* of the Taylor series

$$\sum_{j=0}^{\infty} \frac{y^{(j)}(x_0)}{j!} (x - x_0)^j = \lim_{n \to \infty} \sum_{j=0}^n \frac{y^{(j)}(x_0)}{j!} (x - x_0)^j$$

to the solution y(x). Now for nonlinear equations such as (4), the factor $f^{(n+1)}(\xi)$ in the Lagrange error formula may grow too rapidly with *n*, and the convergence can be thwarted. But if the differential equation is linear and its coefficients and nonhomogeneous term enjoy a feature known as *analyticity*, our wish is granted; the error does indeed diminish to zero as the degree *n* goes to infinity, and the sequence of Taylor polynomials can be guaranteed to converge to the actual solution on a certain (known) interval.